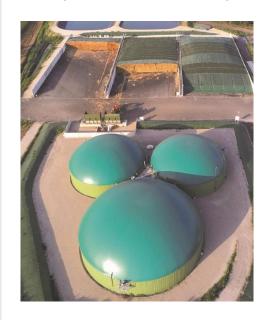


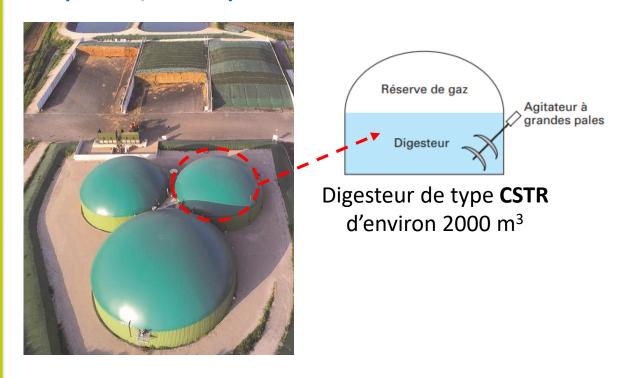
Avec le soutien de

Modélisation de l'hydrodynamique au sein d'un digesteur agricole


Liliane MEGUE KAMKENG

Digesteur agricole étudié

Pot-au-Pin Énergie (PAPE) (Cestas, France)

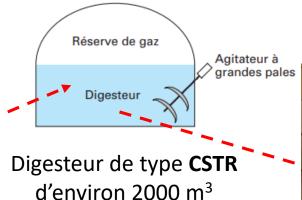


Digesteur agricole étudié

Pot-au-Pin Énergie (PAPE) (Cestas, France)

Procédé de méthanisation actuel

L'agitation est nécessaire mais son coût énergétique peut être mieux déterminé et réduit



Digesteur agricole étudié

Pot-au-Pin Énergie (PAPE) (Cestas, France)

Digestat d'ensilage de maïs + seigle Matière sèche (MS) = 8,2%

Digestat liquide

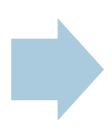
Solides de taille variable

Procédé de méthanisation actuel

➤ Réglage empirique de l'agitation → vers une stratégie d'optimisation

Approche scientifique

Comment définir une agitation adaptée ?



Décrire l'hydrodynamique qui prend place au sein d'un digesteur agricole industriel

Détermination du **modèle rhéologique** du digestat

$$\mu = f(\dot{\gamma})$$

Simulation numérique de la dynamique des fluides (CFD) au sein des digesteurs

Validation du modèle numérique et optimisation de l'agitation

 μ : Viscosité

 $\dot{\gamma}$: vitesse de déformation

Propriétés rhéologiques du digestat de PAPE : méthode

Appareil de mesure

Rhéomètre rotationnel de *TA instruments*

MS: Matière sèche (%)

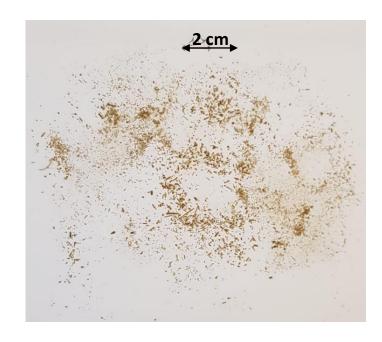
Géométrie de mesure

Paramètres de mesure

- ~50 ml de digestat brut (MS
 ∈ [5,3;7,8%]), broyé grossièrement
 (MS ∈ [5,3;8,2%]) et broyage fin
 (MS ∈ [5,3;15,8%])
- Température = 38°C
- Mesures en écoulement : rampes croissantes et décroissantes de 5.10⁻³ à 50 s⁻¹

Réponse

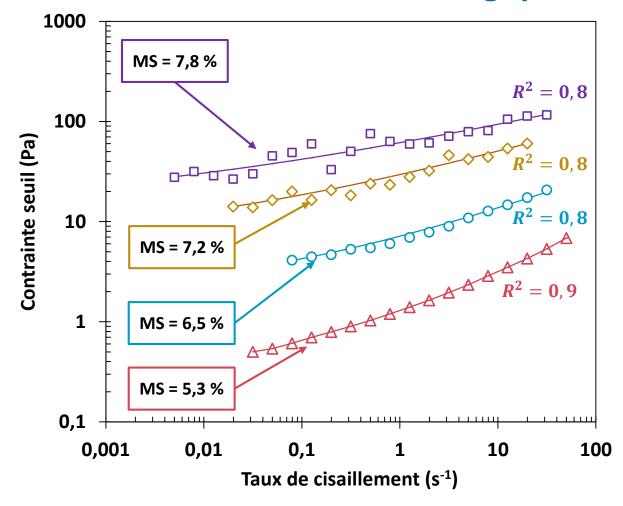
contrainte $(\tau) = f(\dot{\gamma}) \rightarrow \text{viscosité}(\mu) = f(\dot{\gamma})$



Propriétés rhéologiques du digestat de PAPE : résultat

Particules contenues dans les échantillons de digestat brut et broyé

Digestat brutTaille des solides (mm) : [0,3 ; 42]
Taille moyenne : 6 mm


Digestat broyé grossièrement
Taille des solides (mm) : [0,3 ; 17]
Taille moyenne : 4 mm

Digestat broyé finement Taille moyenne : < 0,7 mm

Propriétés rhéologiques du digestat de PAPE : résultat

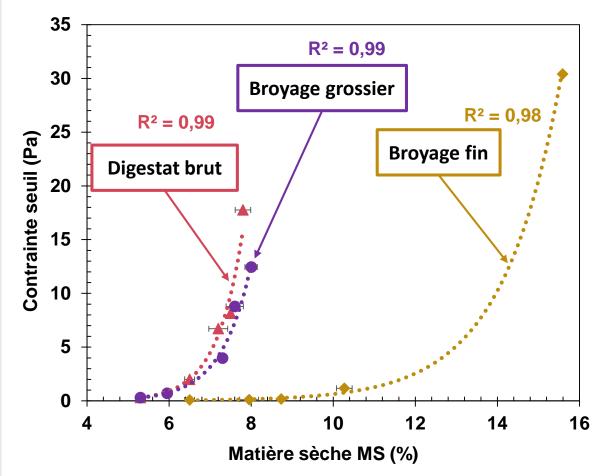
Modèle rhéologique du digestat brut

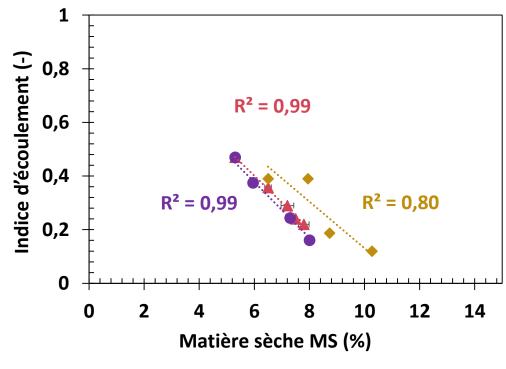
- ❖ Nature rhéologique du digestat de PAPE : fluide rhéofluidifiant à seuil de contrainte
- Modélisation avec le modèle de Herschel-Bulkley

$$\tau = \begin{cases} \tau_0 & ; & \tau < \tau_0 \\ \tau_0 + K \cdot \dot{\gamma}^n & ; & \tau \ge \tau_0 \end{cases}$$

$$u_{app} = \frac{ au}{\dot{\gamma}}$$

Comportement similaire dans le cas du digestat broyé





Propriétés rhéologiques du digestat de PAPE : résultat

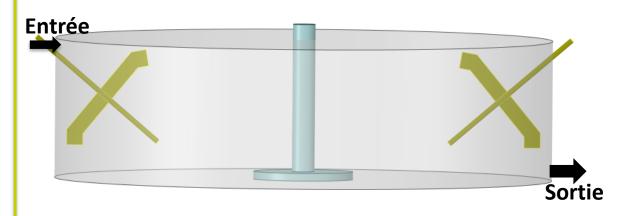
Effet de la MS et du broyage sur la rhéologie du digestat

Modèle rhéologique $au = au_0 + K.\dot{\gamma}^n$

Contrainte seuil : $\tau_0 = \alpha . e^{\beta . (MS)}$

Indice de consistance : $K = \beta' \cdot e^{\beta' \cdot (MS)}$

Indice d'écoulement : n = 1 - a. (MS)



Simulation numérique de l'hydrodynamique

Résolution des équations de Navier-Stokes (Fluent)

- > Fréquence de rotation : 8,4 tr/min
- ➤ Modélisation de la rotation des agitateurs : MRF (Multiple Reference Frame)
- > Régime d'écoulement : laminaire

$$Re_y = \frac{\rho N^2 D^2 k_s}{\tau_0 + K(k_s N)^n} \approx 70 < 100$$

- > Equations résolues en régime permanent :
 - conservation de la masse

$$\nabla \cdot \vec{u} = 0$$

- conservation de la quantité de mouvement

$$\rho \nabla \cdot (\vec{u}\vec{u}) = -\nabla p + \nabla \cdot (\bar{\bar{\tau}}) + \rho \vec{g}$$

- modèle de viscosité du digestat de PAPE pour une MS homogène

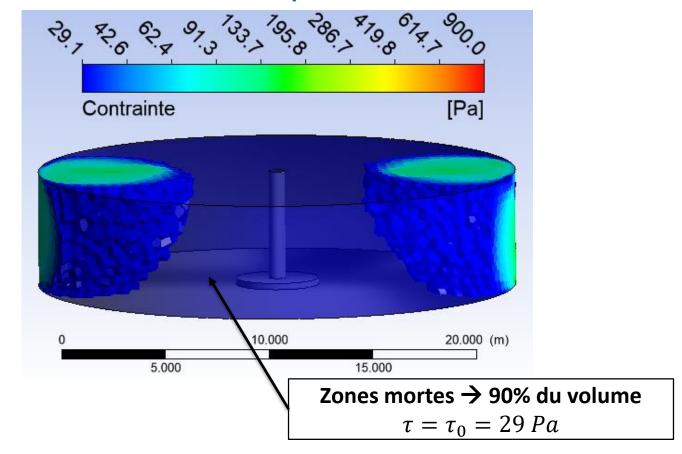
$$\mu(\dot{\gamma}) = \begin{cases} \frac{\tau_0}{\dot{\gamma}_c} + K \dot{\gamma}_c^{-1} & ; & \tau < \tau_0 \\ \frac{\tau_0}{\dot{\gamma}} + K \dot{\gamma}^{n-1} & ; & \tau \ge \tau_0 \end{cases}$$

Digestat brut MS = 8,2 % $\tau_0 = 29 \text{ Pa}$; $K = 108 \text{ Pa. s}^n$; n = 0.18

Bilan d'énergie mécanique

$$P_{fournie} \leftrightarrow P_{dissip\acute{e}} \leftrightarrow P_{\acute{e}lectrique}$$

$$2\pi NC = \textbf{15}, \textbf{7} \ kW \leftrightarrow \iiint_{V} \dot{\gamma}^{2}(V). \ \mu(V). \ dV = \textbf{15}, \textbf{1} \ kW \leftrightarrow U.I. \cos \varphi = \textbf{18}, \textbf{7} \ kW$$

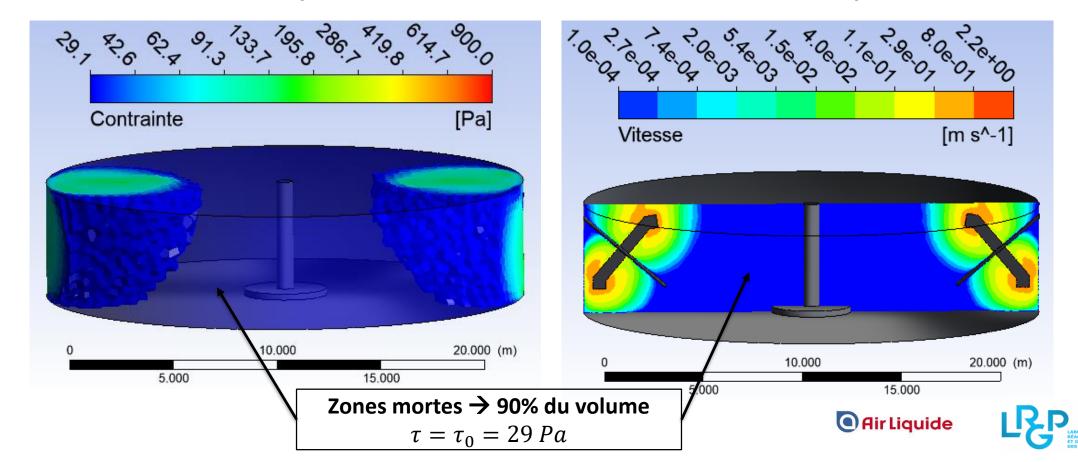


Bilan d'énergie mécanique

$$P_{fournie} \leftrightarrow P_{dissip\acute{e}} \leftrightarrow P_{\acute{e}lectrique}$$

$$2\pi NC = \textbf{15}, \textbf{7} \ kW \leftrightarrow \iiint_{V} \dot{\gamma}^{2}(V). \ \mu(V). \ dV = \textbf{15}, \textbf{1} \ kW \leftrightarrow U.I. \cos \varphi = \textbf{18}, \textbf{7} \ kW$$

Distribution des champs de contrainte



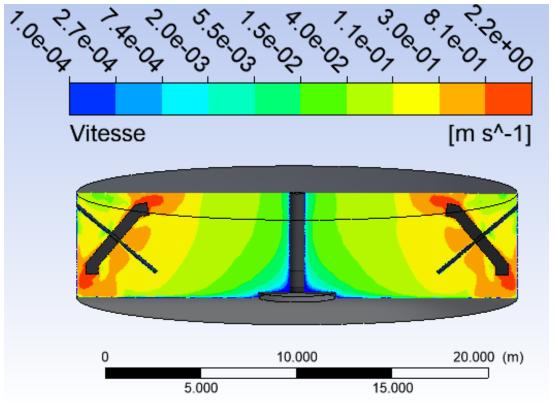
Bilan d'énergie mécanique

$$P_{fournie} \leftrightarrow P_{dissip\acute{e}} \leftrightarrow P_{\acute{e}lectrique}$$

$$2\pi NC = \mathbf{15}, \mathbf{7} \ kW \leftrightarrow \iiint_{V} \dot{\gamma}^{2}(V). \ \mu(V). \ dV = \mathbf{15}, \mathbf{1} \ kW \leftrightarrow U.I. \cos \varphi = \mathbf{18}, \mathbf{7} \ kW$$

Distribution des champs de contrainte

Distribution des champs de vitesse


Digestat finement broyé – MS = 8,2 %

$$\tau_0 = 0.3 \text{ Pa}; K = 2.5 \text{ Pa.s}^n; n = 0.26$$

Distribution des champs de contrainte

Contrainte [Pa] 10.000 20.000 (m) 5.000 15.000

Distribution des champs de vitesse

Conclusions et perspectives

Conclusions

Rhéologie du digestat (ensilage de maïs + seigle) de PAPE

- \blacktriangleright Modélisation des paramètres rhéologiques par des lois exponentielles (pour la contrainte seuil τ_0 et l'indice de consistance K) et linéaires (pour l'indice d'écoulement n)
- > Pas d'impact significatif d'un prétraitement par broyage grossier sur la rhéologie du digestat
- Forte diminution (d'un facteur 10 à 100) des paramètres rhéologiques (τ_0 et K) à partir d'une MS d'environ 7% dans le cas d'un broyage fin

Hydrodynamique au sein du digesteur de PAPE

- Les zones mortes occupent 90 % du volume du digesteur (digestat brut MS = 8,2%)
- > Pas de zones mortes dans le cas d'un digestat finement broyé à une MS de 8,2%

Perspective

Intégrer dans les simulations numériques la variation locale de la viscosité du digestat due aux potentiels gradients locaux de concentration en solide dans le digesteur

Merci!

Éric OLMOS (LRGP)

Philippe MARCHAL (LRGP)

Benjamin LE CREURER (Air Liquide)

Aude BERTRANDIAS (Air Liquide)

À vous

Avec le soutien de

Questions & Réponses