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Introduction

Motivation
European Climate law: Climate-neutrality by 2050 (European Commission, 2019).
French Energy-Climate law: Zero GHG emissions by 2050 (DGEC, 2019)

French primary energy mix as of 2018 (CGDD, 2019):
41% nuclear energy, 11.5% renewables (4.3% biomass, 1.3% bio-fuels, biogas <0.5%).

The role of renewable gas in different future French energy scenarios for 2050:
SNBC2: ~20% NégaWatt: ~20% ADEME Visions: ~16%
National scenarios: top-down allocation of energy sources and carriers => no optimization

A rigorous energy policy must be based on « Optimization » that:

(1) Include the main energy sectors, (2) is based on endogenous carrier and technology choice,
(3) includes the main low-carbon options, (4) has a high temporal resolution and (5) internalizes
both positive and negative emissions.

Existing optimization literature: Mainly electricity sector (Zeyringer et al, 2018, Schlachtberger et
al, 2018 and etc.)

Sector-coupling literature: lack of temporal precision (Doudard, 2018) or lack of endogeneity

and limited representation of low-carbon options (Brown et al, 2018, Bloess et al, 2018,
Victoria et al, 2019 and etc. ), and in none, emissions are completely internalized.

Questions adressed

Relative role of 1) different energy carriers (electricity and gas) and 2) low-carbon energy supply
technologies (renewables, nuclear power and carbon capture and storage)?

3) Importance of Social Cost of Carbon (SCC)?
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» Greenfield optimization on a single node.
» 4 energy vectors; electricity, gas, heat and hydrogen.
» All major energy sectors: Buildings, Agriculture, Industry and Transport.
» End-uses: mobility, heating, electricity and hydrogen for industry.
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Bio-methane production

= Methanization

152 TWhy/year

Organic Anaerobic RIOgAs "
wacte ) m) 60%CH, ) Purification mm) CH.

digestion 30% CO,
10% other

Micro-organisms in a digester

Investment : 300€/kW,,
Fixed O&M :30€/kW, /year CO:
Variable O&M : 50€/MWh,,

= Pyro-gasification

Syngas :
122 TWh, /year 34-45% H- 77 TWhy/year

Energy wood \d Gasification ) %0 Methanation =) CH

& Biomass 20-30% CO
r=63% B8-12% CHa

3-5% Mz l
Investment : 2500€/kW,;,

Fixed O&M : 225€/kW /year Others
Variable O&M : 32€/MWh,,

EU JRC (2015) : Bioenergy potentials ADEME (2018) : Un mix de gaz
for EU and neighbouring countries 100% renouvelable en 2050 ?
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APPLICATION

» Applied to continental France.

» The time horizon is 2050: energy demand, cost, technical and availability
constraints and etc. are all 2050 forecasts.

» Historical weather data for VRE profiles; 2006 as representative weather
year (previous study over 19 years: from 2000-2018; Shirizadeh et al, 2019)
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Results: Primary energy production
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» With no SCC 75% of primary energy production from natural gas.

» SCC of €200/tCO2 leads to natural gas phase-out.

» Gas provides at least 22% of primary energy supply.

> Nuclear power appears for 100€/tCO2 of SCC, maximal share of
nuclear power at €300/tCO2 (25%), but generally less than 20%.



Results: Energy mix for each end-use
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» Whatever the SCC is, the transport sector is dominated by ICE, even
for light vehicles.

» Without SCC value, half of heat demand is satisfied by gas-to-heat, but
from the first SCC value heat is electrified and for SCC of €200/tCO2 it
IS fully electrified (important role of heat network).



Results: Cost & Emissions
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» CO2 neutrality for €200/tCO2 of SCC.

» For SCC> €200/tCO2 negative
emissions.

» Up to 21MtCO2/year of negative
emissions.

» The divergence between technical
cost and the cost including SCC:
not significant for SCC of < €400/tCO2

» For SCC of €500/tCO2 = 16% of
technical cost (€10.5b/year)
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» VREs are the man enablers of cost reduction for low SCC, and

renewable gas is the main enabler for high SCC values.

> In case of availability of renewable gas, an SCC value of 200€/tCO2

leads to carbon neutrality for all the availability scenarios.

> Nuclear power doesn’t play an important role neither from

emissions point of view nor from economic point of view,
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Results: Robustness of SCC
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or negative
emissions.
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Conclusion

A carbon-neutral or negative emission energy system can be
reached with a SCC of €300/tCO,, when cost and demand
uncertainties are taken into account.

Energy supply is highly electrified, but renewable gas provides at
least 22% of the primary energy in a carbon-neutral energy
system.

Without renewable gas even a SCC of 500€/tCO, wouldn’t lead
to carbon neutrality.

Renewables become the main source of the primary energy
supply (up to >80%).

A very big proportion of transport demand is satisfied by gas-
powered internal combustion engine vehicles (~90%).

In a carbon-neutral energy system, heating is fully electrified.

If we are to prioritize some technologies for investment,
renewable gas and electricity technologies are the most
Important ones, while nuclear power does not play an important
role in reaching climate goals in cost optimal ways.
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Limits & Future Research (1/2)

Methane leakage

Existing gas infrastructure for transport and distribution will lead to
methane leakage (Alvarez et al, 2012).

Methane has >20x greenhouse effect than carbon-dioxide.

It can erode all the climate benefits (Union of concerned scientists,
2017).

Particulate pollution

particulate pollution by gas-fueled ICE vehicles has been highlighted
as an important environmental disadvantage (Suarez-Bertoa et al,
2019).

Narrower analysis of bioenergies

The whole biogas value chain? By-products? Biofuels?
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Limits & Future Research (2/2)

= \What we modelled:

Organic waste Anaerobic digestion Purification

Energy wood &
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= \What can be modelled?
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Appendix 1. The main results (1/2)

SCC (€/tCOz) 0 100 200 300 400 500
technology Installed capacity in GW
Offshore wind | 0 0 0 0 0 0
Onshore wind | 19.41 84.58 80.34 74.58 81.74 81.71
Solar PV | 96 80.36 79.32 82.20 89.20 89.79
Run of river | 7.5 7.5 7.5 7.5 7.5 7.5
Lake and reservoir | 12.86 12.86 12.86 12.86 12.86 12.86
Nuclear | 0 15.28 22.64 23.87 18.19 18.11
Natural gas | - - - - - -
Methanization | O 0 17.35 17.35 17.35 17.35
Pyro-gasification | 0 0 0 0 8.79 8.79
OCGT | 2.75 4.58 2.09 0.69 0 0
CCGT | 35.51 14.13 5.20 0.75 0 0
CCGTwithCCS | 0 0 5.47 11.5 17.24 17.31
Power-to-hydrogen | 4.65 6.11 6.37 6.74 7.16 7.16
Power-to-methane | 0 0 3.37 5.29 6.27 6.25
Heat network | 18.23 34.29 46.66 43.73 45.68 45.63
Central HP | 18.23 26.59 26.79 28.80 30.97 34.01
Individual HP | 9.23 37.40 41.50 41.90 40.08 40
Resistive heating | 6.14 21.15 17.92 13.51 14.53 14.82
Central boiler | 0 0 0 0 0 0
Decentralized boiler | 60.04 16.30 0 0 0 0
Battery | 3.83 5.56 4.78 4.83 5.87 5.92
PHS | 9.30 9.30 9.30 9.30 9.30 9.30
Gas storage | O 0 24.29 25.48 27.68 27.67
CTES | 18.23 34.29 46.66 43.73 45.68 45.63
ITES | 20.27 41.26 39.31 37.23 38.48 33.95




Appendix 1. The main results (2/2)

SCC (€/tC02) 0 100 200 300 400 500
technology Annual energy production in TWh
Offshore wind | 0 0 0 0 0 0
Onshore wind | 55.22 240.58 228.53 212.13 232.51 232.99
Solar PV | 136.51 114.27 112.79 114.89 126.84 127.68
Run of river | 28.48 28.48 28.48 28.48 28.48 28.48
Lake and reservoir | 15.30 15.30 15.30 15.30 15.30 15.30
Nuclear | 0 111.35 167.70 182.99 140.42 139.60
Natural gas | 740.62 222.60 0 0 0 0
Methanization | 0 0 152 152 152 152
Pyro-gasification | O 0 0 0 77 77
OCGT | 1.75 2.29 1.04 0.33 0 0
CCGT | 208.97 22.70 4,74 0.40 0 0
CCGT with CCS | O 0 8.26 17.66 71.63 71.75
Power-to-hydrogen | 40.71 46.34 51.20 52.66 59.04 59.04
Power-to-methane | O 0 16.24 24.14 41.38 41.38
Central HP | 151.06 120.16 116.75 123.55 129.42 129.26
Individual HP | 79.87 285.205 328.30 326.89 311.46 311.17
Resistive heating | 4.37 29.20 20.86 13.29 20.93 21.44
Central boiler | O 0 0 0 0 0
Decentralized boiler | 219.30 30.59 0 0 0 0
Light EV | O 3.94 3.97 3.98 4.02 4.14
Heavy EV | O 0 0 0 0 0
Electric bus | O 0 0 0 0 0
Train (electric) | 30 30 30 30 30 30
Light ICE | 97.92 89.71 89.65 89.63 89.54 89.30
Heavy ICE | 56.97 56.97 56.97 56.97 56.97 56.97
ICE bus | 6.47 6.47 6.47 6.47 6.47 6.47
Battery | 0.55 0.34 0.35 0.40 0.57 0.61
PHS | 14.14 20.59 20.30 19.86 17.21 17.42
Gas storage | O 0 25.28 41.99 58.51 58.62
CTES | 0.13 31.03 34.44 27.64 21.77 21.93
ITES | 8.91 9.72 7.78 8.53 8.90 8.84
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Appendix 2. Energy mix for different
avallability scenarios (1/3)
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Appendix 2. Energy mix for different

avallability scenarios (2/3)
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Appendix 2. Energy mix for different
avallability scenarios (3/3)

£ noCCS noEPR noRG noVRE
:
c 400-
& Technology
£300- B Individual Boiler
% Centralized Boiler
2200 B Individual Heat Pump
a | Centralized Heat Pump
© Resistive Heating
2 100:
©
3
e O
< 0 100 200 300 400 5000 100 200 300 400 5000 100 200 300 400 5000 100 200 300 400 500 0 100 200 300 400 500
SCC scenario in €/tCO2
8 noCCS noEPR noVRE
Q
T
: 400-
§ Technolgoy and Type
£ 300- M ICE for Heavy Transport
- ICE for Bus
2 B ICE for Light Transport
3 200~ B EV for Heavy Transport
g I Electric Bus
s EV for Light Transport
. 100- Electric Train
=
®
g 0-
5 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 O 100 200 300 400 500 0 100 200 300 400 500
SCC scenario in €tC0O2

20



Appendix 3. Sensitivity to heat network

coverage
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Appendix 4.

Sankey flow diagram for SCC
of 300€/1CO,
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Appendix 5. Sankey flow diagram for SCC
of 300€/tCO,, without nuclear power
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