

SQ1: Les notions fondamentales

Les notions de puissance et d'énergie

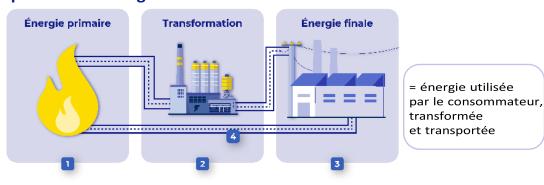
Puissance = Énergie / Δ temps

Exemple: 150 kW

Énergie = Puissance x Δ temps

[J] = [W]x[s][kWh] = [kW]x[h]

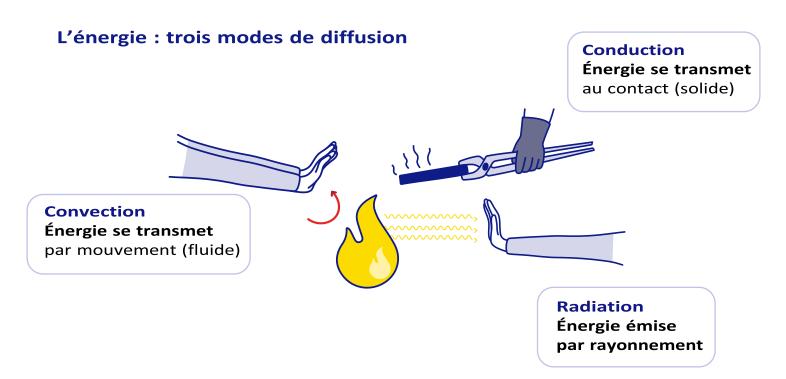
Récapitulatif des unités énergétiques

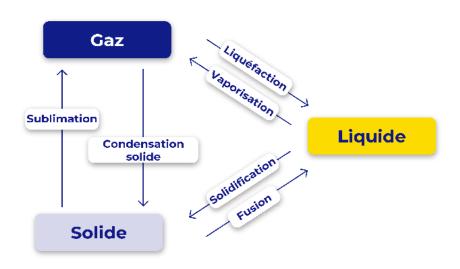

Unités usuelles d'énergie						
1 Wh	3 600 J					
1 kWh	3 600 kJ					
1 kcal	4,18 kJ					
1 kWh	860 kcal					
1 kcal	1,163 Wh					
1 th	1 000 kcal					
1 th	1,163 kWh					

Unités usuelles de puissance					
1 kW	1 kJ/s				
1 kcal/h	1,163 W				
1 th/h	1,163 kW				
1 kW	0,86 th/h				
1 kW	1,36 ch				
1 ch	0,736 kW				

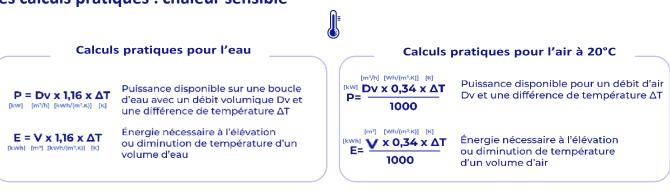
Préfixe	Notation	Valeur				
1	-	1				
kilo	k	1 000				
Méga	М	1 000 000				
Giga	G	1 000 000 000				

L'énergie : énergie primaire et énergie finale

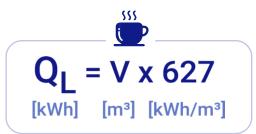

= énergie qui se trouve à l'état naturel (fioul/gaz)



Il faut 2,3 kWh d'énergie primaire pour 1 kWh d'élecricité.


SQ1: Les notions fondamentales

Les différents changements de phase


Les calculs pratiques : chaleur sensible

SQ1: Les notions fondamentales

Les calculs pratiques : chaleur latente

Pour calculer l'énergie nécessaire à l'évaporation d'un volume d'eau à pression atmosphérique

L'énergie nécessaire à vaporiser l'eau à 100°C est 5 fois plus élevée que l'énergie fournie à l'eau liquide pour la chauffer de 0°C à 100°C.

Les émissions de CO₂ par énergie en France

SQ1: les notions fondamentales - webographie

Lien vers	la cal	cu	latrice	de	conversion of	les	unités (éne	rgétic	ues (de l	'ATEE	:
-----------	--------	----	---------	----	---------------	-----	----------	-----	--------	-------	------	-------	---

https://atee.fr/document/calculette-de-conversion-des-unites-energetiques

Lien vers la base Empreinte :

https://base-empreinte.ademe.fr/

Lien vers le site de la BPI qui définit les scopes 1/2/3 des bilans carbone :

https://bigmedia.bpifrance.fr/nos-dossiers/scope-1-2-et-3-du-bilan-carbone-definition-perimetres-exemples

Lien vers la table de la vapeur :

https://www.thermexcel.com/french/tables/vap_eau.htm